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Abstract. We present a theoretical and experimental study of electromagnetic modes of 1D sub-wavelength
rectangular metallic gratings exposed to P-polarized light. Reflection properties of gratings composed
of deep grooves and transmission resonances of gratings composed of deep slits were both examined.
Calculations were made using the modal development proposed by Sheng [1]. The aim of this paper is to give
a review and detailed description of the theoretical modal method, considering P-polarized light, for both
reflecting and transmitting properties. The validity of the method is confirmed by the measured properties
of gold-coated microstructured samples. We show that the complementarity between the experiments and
the calculations allows to perfectly characterize the EM resonances of the different gratings and to establish
a link between the far-field response of these periodic structures and their EM near-field.

PACS. 42.25.Bs Wave propagation, transmission and absorption – 42.25.Gy Edge and boundary effects;
reflection and refraction – 42.79.Dj Gratings

1 Introduction

The optical properties of metallic surfaces and particularly
the reflectivity of rough surfaces have been intensively
studied and are still topics of interest. Until recently these
problems were mainly treated in two limiting cases: the
case of roughness amplitudes smaller than the wavelength
and the case of a very slow profile variation of the rough-
ness on the scale of the wavelength [2]. Moreover, only the
physics related to the far-field such as scattering or diffrac-
tion of light were investigated. The discovery of the SERS
(Surface Enhanced Raman Scattering) in the 70 s has re-
inforced the interest in rough surfaces as it involved strong
and misunderstood phenomena at the surface of the metal,
i.e. in the near-field. Consequently, many studies devoted
to the understanding of the near-field features and their
consequences on the far-field properties were undertaken.
They focused on the description of complicated electro-
magnetic (EM) modes of the metal, originating from the
photon-surface electron interaction, either considering iso-
lated nanometer objects [3], organized nano-particles [4]
or periodic rough surfaces.

Among the large variety of possible rough surfaces,
gratings are certainly those which have been the most in-
tensively studied, first of all for their interesting and use-
ful diffractive properties, also for the well-known Wood’s
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anomalies [5] and later in the framework of the comprehen-
sion of near-field/far-field response of specific structures
exhibiting EM resonances, as was mentioned previously.
More recently, a renewal appeared with the technical pos-
sibility of realizing (i) periodic gratings on the micrometer
or nanometer scale, thus providing samples for simultane-
ous experimental and theoretical studies, and (ii) rough-
ness amplitudes larger than the wavelength which induce
additional EM modes as was theoretically predicted [6]
and recently experimentally evidenced [7]. Two fundamen-
tal aspects of the EM resonances in gratings emerge from
earlier studies. Their occurrence depend on the polariza-
tion state of the incident light which can either be P or S.
In the following, the P-polarization, also called transverse
magnetic (TM), will design the case where the electric
field lies in the plane of incidence and the magnetic field is
perpendicular to it. The S-polarization, also called trans-
verse electric (TE) will correspond to the case where the
electric field is perpendicular to the plane of incidence and
the magnetic field parallel to it. The first aspect of the EM
resonance concerns the small amplitude grating and cor-
responds to the Wood’s anomalies. These minima in the
zero-order reflectivity, occurring for gratings exposed to
P-polarized light, correspond to extinctions of the specular
reflectivity observed at specific angles. They could not be
fully attributed to any diffraction orders, i.e. completely
explained by a redistribution of the intensity occurring
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Fig. 1. Schematic representation of the metallic reflecting
gratings (a) and transmitting gratings (b) illuminated by
P-polarized incident light.

when a new diffraction order emerges from the surface.
Several years latter, they were explained by Fano [8] as
being actually due to the surface plasmons-polaritons ex-
citation by light. The mechanism by which light induces
these surface excitations for weakly corrugated gratings
is now well established [9,10]: the corrugation of period d
provides to the light a pseudo-momentum ±2πn/d. Under
certain circumstances of incidence angle and wavelength,
the resulting momentum can be equal to that of the sur-
face charge oscillations. The surface plasmons are excited
and propagate along the surface; the reflectivity decreases
proportionally to the amount of energy flowing at the in-
terface. The second fundamental aspect of the gratings
concerns those with an amplitude larger than or of the or-
der of magnitude of the wavelength. The grooves of width
smaller than the wavelength constitute sub-wavelength
metallic cavities possessing eigenmodes of frequency de-
pending on the width, the height and the shape of the
groove. These resonances, first mentioned by Hessel and
Oliner [6], are waveguide-like modes and can arise both
in P and S polarization. Properties of parallel metallic
strips periodically separated, equivalent to gratings com-
posed of “open” cavities, i.e. grooves without any metal at
the bottom, through which light can be transmitted, have
also been reported [11]. This previous work shows that
these types of metallic structure become transparent when
the wavenumber tends to zero in P-polarization, i.e. when
the electric field is perpendicular to the metallic stripes,
whereas it becomes semi-transparent in S-polarization.

We have undertaken to produce rectangular metallic
gratings composed of sub-wavelength open or closed cavi-
ties with large amplitudes, as sketched in Figure 1, and
to measure their properties of reflection and transmis-
sion for P-polarized incident light. For convenience, the

gratings with closed cavities (Fig. 1a) will be called here-
after reflecting gratings, whereas those with open cavities
(Fig. 1b) will be named transmitting gratings. Jointly to
the measurements, we have carried out calculations based
on the exact modal expansion first proposed by Sheng [1]
to obtain the far-field response of these devices as well as
the EM fields in the whole space and particularly near
the grating surface. These calculations have enabled us
to understand the physics observed on these devices, in
relation with previous theoretical work [8,6,11]. In this
paper, we first present in details the theoretical approach
we used, considering reflecting and transmitting gratings
exposed to P-polarized light. This modal method, used
by different groups, was previously well described for re-
flecting gratings exposed to S-polarized light [12] but was
not detailed when used more recently for gratings exposed
to P-polarized light [7,13,14]. More generally, the diffrac-
tion of metallic gratings was also investigated in the past
by other theoretical means [15–18]. However, a detailed
review of the calculation and approximations made in
P-polarization to obtain the reflection and transmission
properties of theses gratings, starting from Sheng’s exact
method is, as far as we know, missing. This paper has thus
the double aim of describing in detail the modal expansion
for P-polarized light so that the reader can reproduce the
calculations, and to show its reliability and the physics
that can be deduced from it, by comparison to the experi-
mental measurement we have jointly performed. After the
theoretical description, we present the experimental work
i.e. the sample elaboration and the far-field detection of
the grating’s EM modes. The last section will show that
both types of gratings exhibit EM resonances which were
very well reproduced by the calculations. The resonances,
either originating from the surface plasmons polaritons
(SPP), the guided type of modes or from a coupling of
the two physical phenomena, can be identified by their
different dispersion relations and by the spatial near-field
distribution at the surface of the grating.

2 Theory

The aim of our work is to investigate the EM resonances of
the reflecting and transmitting gratings. To do so, we have
determined the expression of the electromagnetic fields as
well as the amplitudes of the different reflection and trans-
mission orders. From these we can identify the features of
the near-field, via the characteristic of the fields at the
grating surface, those of the far-field, given by the reflect-
ing and transmitting properties, and the resonances of the
system.

The coordinate system of our calculations is repre-
sented in Figure 1: the surface is modeled by a perfect
rectangular profile of periodicity d composed of grooves
of height h and width w. P-polarized light impinges on
the gratings with an incidence angle θ. In this geometry
the magnetic field H is parallel to the z-axis and the elec-
tric field E lies in the plane of incidence. It is therefore
more convenient to calculate the magnetic field, the elec-
tric field being easily deduced from Maxwell’s equations.
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The space is first divided into three regions: the one above
the grating of dielectric constant ε1 = 1, labeled region I,
the region of the metallic grating lying in the medium 1,
labeled region II and the region beneath the grating of
dielectric constant ε3 = 11.7, labeled region III, and used
only when the transmitting gratings are considered. The
magnetic field is expressed in each of these regions, and is
matched at the boundaries of two regions by applying the
continuity conditions of the fields. The study was done
either considering a perfectly conducting surface (metal
dielectric constant ε ≈ −∞) or a real metallic surface.
The assumption of a perfect metallic grating requires that
the tangential component of the electric field and the nor-
mal component of the magnetic field are nil at the sur-
face of the grating. Considering a grating composed of a
real metal implies that the tangential component of the
electric and magnetic fields are continuous and different
from zero at the surface. To calculate them, we have used
the surface impedance approximation [19]. This approach
consists in considering a non-zero tangential component
of the electric field at the surface of the metal whereas the
magnetic field is supposed to have, as for the perfectly con-
ducting surface, only a tangential component, equal to the
applied tangential magnetic field Hext

tg . Solving Maxwell’s
equations enables to express the tangential component of
the electric field at the surface and throughout the skin
depth of the metal by

Etg = Z
(
n ∧ Hext

tg

)
e−(1−i)y/δ, (1)

where n is the normal unit vector outgoing from the metal
surface into the air, δ is the skin depth of the metal and Z
is the surface impedance defined by Z =

√
µ0µ/ε0ε with

µ and ε the relative permitivity and dielectric constant of
the metal. We consider here a non magnetic metal with
µ = 1.

In the following, only the study concerning real metal-
lic gratings will be presented. However, taking the limit
Z = 0 in all equations leads to the full results for per-
fectly conducting gratings.

2.1 Reflecting gratings

In the case where the grooves are closed cavities, we only
consider the first two regions I and II, represented in Fig-
ure 1a. In region I the magnetic field is expressed by the
Rayleigh expansion in plane waves:

H(I)
z (x, y) = eik0(γ0x−β0y) +

+∞∑
n=−∞

Rneik0(γnx+βny), (2)

where k0 = ω/c = 2π/λ is the wavevector and λ the wave-
length. The Rn terms are respectively the amplitudes of
the n different reflected orders, and γn and βn are given by:

γn = sin θ + n
λ

d

β2
n = 1 − γ2

n.

In region II, the Rayleigh development is not valid any
more as the height of the cavities is far too large in com-
parison to the incident wavelength. The magnetic field
can however be simply expressed using the modal devel-
opment proposed by Sheng for perfectly conducting [20]
or real metal [1] cavities. In the former case, the expres-
sion of the field is simple and the matching conditions of
the fields at the interface between region I and II lead to
a set of linear equations which can be numerically solved
to obtain the solution of the problem. For real metallic
surface, even though it is more complicated, the field in
the region II can also be expressed following Sheng, but
the matching conditions lead to a complicated set of non
linear equations which can not be easily solved. Due to the
difficulty of this procedure, Wirgin et al. [18,21] proposed
an approximate method which consists in considering the
vertical walls of the cavities to be perfectly conducting
whereas the horizontal surface at the bottom of the groove
obeys the surface impedance condition.

Starting from these assumptions, the expression of the
field in region II is determined first considering that it
satisfies the Helmholtz equation and can be written as:

H(II)
z (x, y) =

(
Aeik1x + Be−ik1x

) (
Ceik2y + De−ik2y

)
,

where the wavevectors k1 and k2 obey the condition

k2
1 + k2

2 = k2
0 .

The determination of the expressions for k1 and k2 and
of the relations between the coefficients A and B on one
hand and C and D on the other hand, is done using the
boundary conditions along the perfectly conducting verti-
cal walls of the cavities:

E(II)
y ∼

(
∂H

(II)
z

∂x

)
x=±w/2

= 0, (3)

and using the surface impedance condition given by equa-
tion (1) along the horizontal faces:(

∂H
(II)
z

∂y
+ ik0(Z/Z1)H(II)

z

)
y=−h+

= 0, (4)

where Z1 =
√

µ0µ1/ε0ε1 =
√

µ0/ε0 is the impedance of
medium 1.

The solution of these two equations easily leads to the
expression for the magnetic field in region II:

H(II)
z (x, y) =

+∞∑
n=0

An cos
[nπ

w

(
x +

w

2

)]
eiµnh

×
(
eiµn(y+h) + rne−iµn(y+h)

)
, (5)

where An is the amplitude of the nth eigenmode of
the cavity and rn = (Yn + 1)/(Yn − 1) with Yn =
(µn/k0)(Z1/Z) and µ2

n = k2
0 − (nπ/w)2. For convenience,

we will use the following notation Z/Z1 = 1/
√

ε = ξ. Evi-
dently, the limit of the perfectly conducting metal becomes
ξ = 0.
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Using the expression of the fields in regions I and II,
the matching conditions are applied at the interface y = 0.
We know that the boundary condition along a perfectly
conducting and non magnetic surface is the continuity of
the tangential component of the electric field, whereas the
condition above the aperture of the cavities is the continu-
ity of both the tangential components of the electric and
magnetic fields. Therefore, the continuity of the tangential
component of the electric field is ensured along the whole
surface whereas that of the magnetic field is only valid
above the apertures of the cavities for a perfect metal.
This is expressed as follows:


(
∂H(I)

z

∂y

)
y=0+

=
(

∂H(II)
z

∂y

)
y=0−

x ∈ [−w/2, +w/2]

(
∂H(I)

z

∂y

)
y=0+

= 0 x ∈ [−d/2,−w/2]

and x ∈ [+w/2, +d/2]

H
(I)
z (x, 0+) = H

(II)
z (x, 0−) x ∈ [−w/2, +w/2].

(6)
Taking into account a real metallic surface via the surface
impedance condition implies that the tangential electric
and magnetic fields obey the relation:

(
∂H

(I)
z

∂y
+ ik0ξH

(I)
z

)
y=0+

=

(
∂H

(II)
z

∂y
+ ik0ξH

(II)
z

)
y=0−

= 0 (7)

at the surface of the metal, i.e. for x ∈ [−d/2,−w/2] ∪
[+w/2, +d/2] and y = 0.

The matching conditions, given in (6), are thus re-
placed, in the case of a good but not perfectly conducting
surface, for x ∈ [−d/2, +d/2] by:(

∂H
(I)
z

∂y
+ ik0ξH

(I)
z

)
y=0+

=

(
∂H

(II)
z

∂y
+ ik0ξH

(II)
z

)
y=0−

,

(8)
and for x ∈ [−w/2, +w/2]:

H(I)
z (x, 0+) = H(II)

z (x, 0−). (9)

Equation (8) is projected onto the set of basis vectors
exp(−ik0γmx), whereas equation (9) is projected onto the
set of basis vectors cos

[
mπ
w (x + w/2)

]
, periodic over w.

The projection onto the exp(−ik0γmx) is written, noting
from equation (7) that the integral in region II is null for
x ∈ [−d/2,−w/2]∪ [w/2, d/2]:

1
d

∫ +d/2

−d/2

(
∂H

(I)
z

∂y
+ ik0ξH

(I)
z

)
y=0+

e−ik0γmxdx =

1
d

∫ +w/2

−w/2

(
∂H

(II)
z

∂y
+ ik0ξH

(II)
z

)
y=0−

e−ik0γmxdx. (10)

Inserting the expressions of the magnetic fields and their
derivatives in (10) leads to the following expression for the
Rm terms:

Rm =
(

β0 − ξ

β0 + ξ

)
δm0 +

Γ

k0(βm + ξ)

×
+∞∑
n=0

AnS−
mn (k0ξ + µn)

(
e2iµnh − 1

)
, (11)

where Γ = w/d and the S±
mn terms are integrals de-

fined by:

S±
mn =

1
w

∫ +w/2

−w/2

cos
[nπ

w
(x + w/2)

]
e±ik0γmxdx.

If n = 0 we have S+
m0 = S−

m0 = sinc(k0γmw/2) = sm.
The projection onto the set of basis vectors cos[mπ

w (x+
w/2)] is written:

1
w

∫ +w/2

−w/2

cos
[mπ

w
(x + w/2)

]
H(I)

z (x, 0+)dx =

1
w

∫ +w/2

−w/2

cos
[mπ

w
(x + w/2)

]
H(II)

z (x, 0−)dx,

and after insertion of the fields expression, we obtain:

Am =
(

2
1 + δm0

)(
1

e2iµmh + rm

) +∞∑
n=−∞

S+
nm(δn0 + Rn).

(12)
Solving this linear equation system (Eqs. (11, 12)) for the
amplitudes Am and Rm allows to numerically calculate
these terms and to determine the field in the whole space.
The Rm are replaced in (12) by their expression given
in (11) to obtain a matrix equation for the amplitudes
Am given by:

H A = D or
+∞∑
�=0

Hm�A� = Dm

with

Hm� = δm� −
(

2Γ

1 + δm0

)
(µ�/k0 + ξ)

×
+∞∑

n=−∞

S+
nmS−

n�

βn + ξ

(
e2iµ�h − 1

e2iµmh + rm

)

Dm =
4β0

(1 + δm0)(β0 + ξ)
S+

0m

(e2iµmh + rm)
· (13)

The first step is to truncate the infinite-order matrix to
a finite size for the numerical calculations. The values of
the A0, A1, · · · terms are then obtained from the inver-
sion of H. Limiting the square matrix (�, m) and the sum
over n to finite values L and N amounts to consider the
existence of L eigenmodes in the cavities and N reflected
orders, which can be propagating or evanescent, L and
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N being sufficiently high to have a reliable description of
the system. In practice, the solutions are searched for in-
creasing values of (L, N) until a stable solution appears.
This stability is rapidly obtained, for typical values L < 9
and N < 50. Previous works, realized for equivalent grat-
ings exposed to S-polarized light [12,21], mention that
even though the solutions can slightly change for L < 9,
the description of the system in terms of reflectivity val-
ues and resonant frequency determination, is very precise
when considering only the fundamental eigenmode � = 0
of the cavity, in the limit of sub-wavelength slit apertures,
i.e. for 2w < λ. This limit can be understood regarding
the wavevectors µ� of the fields in the cavities given in
equation (5). It appears that all the µ� are imaginary,
except when � = 0, as long as 2w < λ. If w becomes
larger than λ/2, the mode � = 1 is also propagating and
the unimodal approximation is not valid anymore. This
unimodal approximation considerably simplifies the equa-
tions. Indeed, when considering only the mode � = m = 0
in equation (2.1) we have:

A0

[
1 − Γ

(
e2iµ0h − 1
e2iµ0h + r0

)
(1 + ξ)

+N∑
n=−N

s2
n

βn + ξ

]
=

2β0

β0 + ξ

s0

(e2iµ0h + r0)

and

Rm =
(

β0 − ξ

β0 + ξ

)
δm0 + ΓA0(e2iµ0h − 1)sm

(
1 + ξ

βm + ξ

)
·

Knowledge of the terms A0 and Rm allows us to calcu-
late the field in the whole space as well as the reflectance
properties of the gratings. Resonance frequencies are de-
termined either from the minima in the specular or in
the total reflectivity, the latter being classically defined as
R =

∑
nεU

βn

β0
RnR∗

n where U is the set of n for which the
βn are real. For each frequency resonance, the field near
the surface of the gratings can be displayed. This gives an
insight into the physical phenomena involved in the reso-
nance as the near-field pattern strongly differs depending
on whether surface plasmons or guided modes are excited.

2.2 Transmitting gratings

The transmitting gratings, represented in Figure 1b, are
similar to the reflecting gratings except that the grooves
are here open cavities. The major aim of calculating the
far-field response of these gratings is to determine under
which conditions light can be transmitted through these
metallic sub-wavelength slits. The theoretical approach is
identical to that previously presented for the reflecting
gratings, with the difference that region III below the grat-
ing has to be taken into account (Fig. 1b). Consequently,
additional matching conditions appear, at the interface
y = −h, between the tangential components of the mag-
netic and electric fields of the regions II and III. Moreover,
the expression of the magnetic field H

(II)
z in region II is

slightly modified with respect to its expression for reflect-
ing gratings given in equation (5), as it is, in this case, only
defined by the condition imposed by the metallic vertical
walls. The latter, given by equation (3), leads to the fol-
lowing expression of the magnetic field in region II:

H(II)
z (x, y) =

+∞∑
n=0

cos
[nπ

w

(
x +

w

2

)](
Aneiµny + Bne−iµny

)
.

In region I and III, the fields are expressed by the Rayleigh
expansion. The expression of H

(I)
z remains that given by

equation (2) and H
(III)
z is described as:

H(III)
z (x, y) =

+∞∑
n=−∞

Tneik0(γnx−n3βn,ty),

where Tn is the amplitude of the nth transmitted order,
β2

n,t = 1 − (γn/n3)2 and n3 =
√

ε3.
The matching condition at the interface y = 0 re-

mains the same as for the reflecting gratings (Eq. (8))
and that at the interface y = −h is similarly obtained and
expressed by:

(
∂H

(II)
z

∂y
+ in3k0ξ3H

(II)
z

)
y=−h+

=

(
∂H

(III)
z

∂y
+ in3k0ξ3H

(III)
z

)
y=−h−

(15)

for x ∈ [−d/2, +d/2], and

H(II)
z (x,−h+) = H(III)

z (x,−h−) (16)

for x ∈ [−w/2, +w/2], with ξ3 = Z/Z3 =
√

ε3/ε and Z3 =√
µ0/ε0ε3 is the impedance of the medium in region III.
After projection of the matching conditions at both

interfaces y = 0 and y = −h of equations (8, 15) onto the
set of basis vectors exp(−ik0γmx) and of equations (9, 16)
onto the set of basis vectors cos[mπ

w (x+w/2)], as was done
in the previous subsection for the reflecting gratings, we
obtain a set of linear equations between the amplitudes of
the modes in the grooves, Am and Bm, and the amplitudes
of the reflected and transmitted orders, Rn and Tn:

Am + Bm =
(

2
1 + δm0

) +∞∑
n=−∞

S+
nm(δn0 + Rn) (17)

Rm =
(

β0 − ξ

β0 + ξ

)
δm0 +

Γ

βm + ξ

×
+∞∑
n=0

S−
mn [An(µn/k0 + ξ) − Bn(µn/k0 − ξ)] (18)

Ame−iµmh + Bme+iµmh =
(

2
1 + δm0

) +∞∑
n=−∞

S+
nmTn

(19)



148 The European Physical Journal D

Tm =
√

ε3
Γ

βm,t + ξ3

+∞∑
n=0

S−
mn

× [−Ane−iµnh(µn/k0 − ξ) + Bne+iµnh(µn/k0 + ξ)
]
.

(20)

Inserting (18) in (17) and (20) in (19) leads to:

+∞∑
�=0

DI+
m�A� +

+∞∑
�=0

DI−
m�B� = Gm

+∞∑
�=0

DIII−
m� A� +

+∞∑
�=0

DIII+
m� B� = 0, (21)

where

DI±
m� = δm� ∓ (µ�/k0 ± ξ)(

2
1 + δm0

)Γ
+∞∑

n=−∞

S+
nmS−

n�

βn + ξ

DIII±
m� = e±iµ�h

[
δm� ∓ (µ�/k0 ± ξ)

×
(

2
1 + δm0

)√
ε3Γ

+∞∑
n=−∞

S+
nmS−

n�

βn,t + ξ3

]

and

Gm =
(

2
1 + δm0

)(
2β0

β0 + ξ

)
S+

0m.

The Am and Bm terms of the A and B vectors are deter-
mined by numerically solving this linear matrix system:

DI+A + DI−B = G

DIII−A + DIII+B = 0. (22)

In the spectral range we have studied these gratings (1.4
to 25 µm), the width of the groove is smaller than the half
wavelength. The unimodal approximation can therefore be
used as it is sufficient to understand our experimental data
and the physics involved, and is much easier to handle. In
this approximation, the DI± and DIIII± terms are no
longer matrix but numbers given by:

DI± = 1 ∓ (1 ± ξ)Γ
+∞∑

n=−∞

s2
n

βn + ξ

DIII± = 1 ∓ (1 ± ξ)
√

ε3Γ

+∞∑
n=−∞

s2
n

βn,t + ξ3
,

and the amplitudes of the first mode in the cavity are
expressed by:

A0 =

(
2β0s0
β0+ξ

)
DIII+

DI+DIII+ − DI−DIII−

B0 =

(
−2β0s0
β0+ξ

)
DIII−

DI+DIII+ − DI−DIII− · (23)

Fig. 2. SEM pictures of the rectangular profile of the surface
obtained by periodically etching of silicon oxide on silicon(a)
and gold coverage of the whole cavity for the reflecting gratings
(b) and of the vertical walls of the cavity for the transmitting
gratings (c).

Transmission and reflection properties of these gratings
can thus be evaluated. Our results are in very good agree-
ment with those obtained from Lalanne et al. who used a
semi-analytical one-mode model to calculate the transmis-
sion and resonance locations of these types of transmitting
gratings, considering a real metal [22].

Moreover, as we will see in the last section, our calcu-
lations are also in very good agreement with the experi-
ments and this permits drawing interesting conclusions on
the transmission mechanism through such sub-wavelength
apertures.

3 Experimental

3.1 Sample preparation

The gratings were fabricated at the LETI-CEA PLATO
facility (Grenoble) by standard electron beam lithography.
A 1 µm-thick SiO2 layer was first thermally (TEOS) grown
on a {100} silicon wafer. After deposition of an electroneg-
ative resist, the sample was irradiated by an electron beam
performing horizontal parallel lines of width w, separated
by a distance d, over a square area of 6×6 mm2. The irradi-
ated resist and the SiO2 beneath were etched away by SF6

Reactive Ion Etching down to the silicon substrate. After
removal of the remaining resist, an almost-perfect rect-
angular profile of the surface was obtained, as shown in
Figure 2a. The resulting structured surface was metallized
by thermal evaporation of a gold layer of 60 to 100 nm,
much thicker than the skin depth of a few nanometers in
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the IR region, in order to prevent transmission of the light
through the metal. The adhesion of gold onto the silicon
oxide was ensured by an intermediate 30 nm-thick layer
of Ti. Two procedures for the metalization were followed,
depending on whether reflecting or transmitting gratings
were required. In the former case, Ti and Au were suc-
cessively evaporated at various incidence angles by tilting
the sample to obtain a homogeneous coverage over the
horizontal surface, as well as over the bottom and vertical
walls of the cavities, as shown in Figure 2b. For the trans-
mitting gratings, the bottom of the grooves were preserved
from gold coverage by a self-shading effect: the evapora-
tion of Ti and gold was done by tilting successively the
sample by an angle ±α defined by α ∼ arctan(w/h). In
this way, light transmission was only allowed through the
sub-wavelength cavities formed by the open grooves.

Even though the studied samples are not fully metal-
lic gratings, they are high quality gratings and the ap-
proximation to entire metallic structures is excellent. In-
deed, the well-controlled procedure of SiO2 lithography
enables to realize an almost-perfect rectangular profile
surface (cavity walls less than 10◦ from the vertical, ex-
cellent reproducibility of the period, height and width of
the grooves), combined with small dimensions (nominal
values of d = 1.75 µm, h = 1 µm and w = 0.9 µm). The
validity of the approximation of these samples to fully
metallic gratings essentially relies on the quality of the
gold coating. For both type of gratings, we found that the
gold thickness, even though it is smaller along the walls of
the grooves, always remained much larger than the skin
depth value. Moreover, the right angles of the rectangular
profile, on the top and bottom of the grooves, were fully
covered without leaving any uncoated SiO2 regions.

In the case of the transmitting gratings, we see in Fig-
ure 2c, that the gold coverage does not reach exactly the
bottom of the vertical walls. However this does not rep-
resent a real drawback, the most important being that
the two vertical walls are symmetrically covered. Conse-
quently, the height value taken into account for the calcu-
lations will be that of the gold layer, and we will keep in
mind that the light transmitted by the metallic grating is
allowed to go through part of the SiO2 layer. Finally, we
highlight that, in the case of the transmitting gratings, the
gold/Si interfaces taken into account for the calculations
are in the sample SiO2/Si interfaces.

3.2 EM modes measurements

The experiments consist in measuring the far-field re-
sponse of the gratings to an incident P-polarized light.
Specular reflectance spectra at various incidence angles
and normal incidence transmission measurements were ob-
tained at room temperature, in dry air, in the 1.4 to 25 µm
spectral range, with a FTS60A DigiLab Fourier Transform
photospectrometer. As the incident beam was not polar-
ized, a linear polarization analyzer was placed in between
the outgoing beam (reflected or transmitted) and the de-
tector in order to select the P-polarized response of the
grating. The obtained information is equivalent to the one

we would have by polarizing the incident beam as, in our
geometry where the plane of incidence is perpendicular to
the periodicity of the grating, the P and S polarizations
are strictly uncoupled and can be treated independently.
This would not be true anymore if the incidence plane
was not perpendicular to the periodicity of the grating:
a fully vectorial theory would then be necessary. The in-
cidence angle was determined with an accuracy of a few
degrees only due the divergence of the beam. Finally, for
the reflecting gratings, the spectra were all normalized to
the reflected intensity of a plane gold layer, evaporated
on a non-structured SiO2, simultaneously to that of the
grating. In the case of transmitting gratings, transmission
was normalized to that of the 5 mm-diameter hole of the
empty sample holder.

4 Results and discussion

The presented experimental results and their compari-
son to the theoretical work correspond to reflecting and
transmitting gratings with the same nominal parame-
ters; d = 1.75 µm, w = 0.9 µm and h = 1 µm. The
real parameters, introduced in the calculations, are ob-
tained from scanning electron microscopy pictures. For
the reflecting grating we measured w = 0.7 ± 0.1 µm
and h = 1.11 ± 0.01 µm and for the transmitting one
w = 0.67± 0.05 µm and h = 0.93± 0.1 µm. The accuracy
on the height was much better for the reflecting gratings
as it induced by the control of the SiO2 thickness and
etching process and not by the gold coverage along the
vertical walls as in transmitting gratings.

4.1 Reflecting gratings

Figure 3 displays the specular reflectivity measured for
an incidence angle θ = 7.5◦. We notice the existence of
several minima which are the far-field signature of the ex-
citation of a resonance of the grating. Indeed, when an
EM resonance is excited, part of the EM energy is local-
ized at the surface and/or in the cavities inducing a dip
in the reflectivity, proportional to the amount of energy
absorbed by the modes. The experimental dips are repro-
duced in the calculated spectrum. However, we notice that
the first dip, appearing at 1 970 cm−1, is much more pro-
nounced in the experimental case than in the theoretical
one. This is attributed to the fact that we have considered
the vertical walls of the cavities to be perfectly conduct-
ing metal. We thus minimize theoretically the quantity of
absorbed EM energy and thus the depth of the dip. This
phenomenon is less visible on the other peaks as the sur-
face plasmons excitation, which are well described by a
realistic dielectric constant, then intervene. As mentioned
in the introduction, the EM resonances of the gratings can
either originate from the surface plasmons polaritons ex-
citation or from the wave-guide like modes excited in the
cavities. In both cases, approximations enable to have a
rough feeling of the resonant frequencies. However, to be
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Fig. 3. Specular reflectivity measured on a reflecting grat-
ing of parameter d = 1.75 µm, w = 0.7 ± 0.1 µm and
h = 1.11 ± 0.01 µm, with an incidence angle θ = 7.5◦ (dot-
ted line) and theoretical spectra calculated in the multimodal
case, considering a real metal, d = 1.75 µm, w = 0.75 µm and
h = 1.11 µm (black line). The dielectric function of gold was
taken from [23]. Dotted and black arrows respectively indicate
the experimental and calculated modes. The CM and SP(Air)
symbols take for the cavity modes and the surface plasmons
excitations.

able to undoubtedly attribute each dip to a mode, the full
calculation presented in Section 2 has to be undertaken.

As a first approximation, we can consider that the sur-
face plasmon polaritons are excited in the same way as for
shallow corrugated gratings:

1/λ =
n

d(
√

ε/(ε + 1) ± sin θ)
· (24)

For a very good metal, as is the case for gold in the
infra-red region, this equation basically becomes 1/λ =
n/d(1± sin θ) which is strictly equivalent to the condition
γn = ±1.

In the case of the cavity modes, Lopez-Rios and
Wirgin [24] calculated, assuming a sub-wavelength cav-
ity (w/λ 	 1), that the resonance should occur, in the
case of a perfectly conducting grating, when the relation

coth(k0h) = −σ (25)

is satisfied, where σ = (Γk0d/π)[ln(2πΓ ) − 3/2]. In their
approximation, Γ 	 1 and σ → 0. Consequently, they
deduce that the wave-guide modes approximately appear
at the wavenumbers 1/λ = (2n − 1)/4h.

We see from equations (24, 25) that these two types
of EM modes can be distinguished by varying the inci-
dence angle θ since the surface plasmons frequencies will
be shifted (existence of a dispersion) while those of the
guided modes will remain constant (no dispersion). When
the height of the grooves is important or when the surface
plasmons and guided modes have close resonance frequen-
cies, coupling can occur and these rough approximations
are not valid to precisely determine the resonant frequen-
cies; more accurate calculations such as those described

Fig. 4. Theoretical (gray line), experimental (black dots) dis-
persion relation of the reflecting grating, and surface plasmons
(black solid line) dispersion calculated in the approximation of
a small roughness periodic surface (Eq. (24)). The dimensions
of the gratings are the same as that given in Figure 3. The
modes appearing at an incidence angle θ = 20◦ are highlighted
by open diamonds.

in Section 2 have to be undertaken. However, the exis-
tence or not of a dispersion as a function of the incidence
angle, which appears in these approximations, remains a
valid signature. The usual way to find the dispersion rela-
tion of an EM mode is to plot its wavenumber 1/λ, pro-
portional to its energy, as a function of its parallel mo-
mentum normalized by the length of the first Brillouin
zone: k‖ = k0 sin θ/(π/d), depending on the angle of in-
cidence. The couples (1/λ, k‖) were obtained from the
wavenumbers and the angles of occurrence of the dips in
the specular reflectance curves and reported in Figure 4.
The experimental points come from curves recorded at
θ = 0, 5, 7.5 and 15◦, whereas theoretical points provide
from curves calculated at various incidence angles rang-
ing from 0◦ to 20◦. We first remark that the calculated
modes describe both the location and the behaviour as a
function of the parallel momentum of the measured EM
modes. Three different types of modes appear in Figure 4.
The first branch, located at 1/λ = 1 960 cm−1, shows no
dispersion and is attributed to the excitation of the first
cavity mode (n = 1). The second mode occurring at nor-
mal incidence at 1/λ = 5 350 cm−1, follows the black line
describing the surface plasmons excitations as given in
equation (24) and consequently corresponds to this type
of excitation. The behaviour of the third mode, located
at 1/λ = 5 680 cm−1 at normal incidence is more com-
plicated. It exhibits no dispersion in the middle of the
zone, where no coupling with other modes occur. In con-
trast, on both extremities of the zone the branch disperses
to almost join with the surface plasmon n = −1, on the
small wavenumber side, and n = −2 on the other side.
This branch corresponds to the second order wave-guide
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Fig. 5. Magnetic field intensity map at the neighborhood of
the grating, calculated for an incidence angle θ = 20◦ and
taking into account the first ten eigenmodes of the cavity, at
the wavenumbers 1/λ = 2040 cm−1 (a), 1/λ = 4260 cm−1 (b)
and 1/λ = 6370 cm−1 (c). x and y-axes are displayed in µm
and the color scale represents the H-field intensity normalized
with respect by the incident field intensity.

resonance (n = 2), more or less strongly coupled with
the surface plasmons modes, depending on the incidence
angle.

To get a deeper insight into the physics involved in
these resonances, we generated, for various wavenumbers,
magnetic field maps in the air near the surface of the grat-
ing. This gives a representation of the near-field, when a
resonance identified both experimentally and theoretically
in the far-field occurs. The differences between the three
previously described modes clearly appears. Field maps
were calculated for an incidence angle θ = 20◦, at the fre-
quencies 1/λ = 2 040 cm−1 (Fig. 5a), 1/λ = 4 260 cm−1

(Fig. 5b) and 1/λ = 6 370 cm−1 (Fig. 5c) corresponding
to the resonance frequencies which are highlighted in Fig-
ure 4 by open diamonds.

The representation of the magnetic field for the mode
at 1/λ = 2 040 cm−1 (Fig. 5a) shows a localization and
amplification of the field within the slit, which is in good
agreement with a cavity resonance. The surface plasmon
excitation modes exhibit quite different features, as can be
seen in Figure 5b, as the field is amplified at the surface of
the grating. Finally, the coupling which can exist between
theses two type of resonances is also clearly illustrated in
Figure 5c: a standing wave with two nodes is localized in
the groove and coexists with a surface plasmon. For each
of these modes, the amplification of the field amplitude
is around one order of magnitude. Depending on the inci-
dence angle and on the strength of the coupling between
the modes, the amplitude amplification can reach two or-
ders of magnitude, either at the surface of the metal or
within the grooves.

Fig. 6. Experimental normal transmission (red bold line) and
calculated spectra within the unimodal approximation (dot-
ted blue line) and in the multimodal case taking four modes
within the cavities (black bold line). The black arrows indicate
the theoretical excitations of surface plasmon at the air/metal
interface with the SP(air) label, of the surface plasmon at the
Si/metal interface with the SP(Si) label and the cavity mode
with the CM label. Red arrays indicate the experimental re-
gions of enhanced transmission. The inset represents the exper-
imental and calculated spectrum taking a 2◦ incidence angle
into account for the beam divergence.

4.2 Transmitting gratings

The calculated and measured spectrum of the normal in-
cidence transmission are displayed in Figure 6, for the
sample mentioned in Section 3. The experimental zero-
order transmission was normalized to the transmission of
an empty 6 mm-diameter hole of the sample holder while
the calculated zero-order transmission was corrected for
multiple incoherent scattering in the silicon substrate. In-
deed, the calculated transmission t = t0t

∗
0/n3 corresponds

to the amount of light transmitted by the grating into
the silicon substrate. To compare it to the experimental
values, we have to take into account the Si/air interface
delimiting the sample. We applied to the calculated spec-
trum the usual correction factor for incoherent multiple
scattering within a medium delimited by two flat inter-
faces (1) and (2) of respective reflection and transmission
coefficients t1, r1 and t2, r2. The total transmission T was
thus expressed as:

T =
(

t0t
∗
0

n3

) |t2|2
1 − |r1|2|r2|2 ·

The coefficients r2 and t2 at the flat Si/air interface are
classically expressed as:

r2 =
nSi − nair

nSi + nair
; t2 =

2nSi

nSi + nair
·

For the interface (1) between the grating and the Si we as-
sumed that r2

1 = r0r
∗
0 , t21 = t0t

∗
0 and r2

1 = 1 − t0t
∗
0, which



152 The European Physical Journal D

consist in neglecting the absorption. The total transmis-
sion reported was consequently finally expressed as:

T =
(

t0t
∗
0

3.42

)
2.4

1 − 0.3 × (1 − t0t∗0)
·

This correction was applied to the two calculated spec-
tra reported in Figure 6, respectively, corresponding to
the unimodal approximation and to the multimodal case,
taking into account four modes within the cavities. Using
more modes is not necessary as the numerical convergence
was already reached. Both numerical curves are qualita-
tively identical and, as we will see in the following, the con-
clusions drawn from the unimodal and multimodal cases
on the phenomenon leading to enhanced transmission are
the same.

As was reported in the work of Ulrich [11], we find that
the calculated and measured transmission is high in the
region where d/λ → 0, below 1 400 cm−1. In this region,
the experimental spectrum also exhibits the SiO2 and Si
phonon absorption which are not reproduced theoretically,
as the imaginary part of the Si dielectric constant and the
SiO2 were not taken into account. Above 1 400 cm−1, we
clearly see that a highly resonant transmission occurs, for
particular frequencies. These transmission properties are
analogous to those of 2D metallic holes arrays, reported
by Ebbesen et al. [25,26]. Previous theoretical works con-
cerning 1D gratings similar to the devices studied in this
paper [14,22] proposed two separate mechanisms for reso-
nant transmission: either exciting a cavity resonance able
to transmit light through the slits, or transmission due to
resonant coupling between plasmons on both interfaces of
the grating. These latter modes, also held responsible for
the enhanced transmission observed in 2D holes arrays,
called “molecular plasmons” modes by Moreno et al. [27].
In our experiment, the resonant transmission zones clearly
appear at 2 530 cm−1 with more than 30% of transmission
and at 5 230 and 5 900 cm−1 with 12% of transmission.
Comparison between the experimental results and our cal-
culations must lead to answering the following questions
(i) what are the mechanism involved in the transmission
and (ii) are they identical or not to those theoretically
proposed [14,22]?

In Figure 6, we see that the calculated spectrum is in
good agreement with the experiment, reproducing both
the positions and amplitudes of the enhanced transmis-
sion zones. However, some differences also appear at fre-
quencies such as 1 670 cm−1 or 3 300 cm−1 which will
be further discussed. Electromagnetic modes due to the
surface plasmons, appear at first approximation and as
for reflecting gratings, at frequencies for which γn = ±1
for the air/metal interface and at frequencies for which
γn/n3 = ±1 for the Si/metal interface. Beyond this ap-
proximation, we find from equations (23), that the minima
in the modulus of βn + ξ and of βn,t + ξ3 respectively lead
to the surface plasmon excitations at the air/metal and
at the Si/metal interfaces. Both are essentially uncoupled
owing to the difference in the dielectric constants of Si
and air. The surface plasmons at the interface between
regions I and II are expected around 5 714 cm−1 at nor-

Fig. 7. Magnetic field map intensity at the neighborhood
of the grating, calculated for an incidence angle θ = 0◦, at
the wavenumber 1/λ = 5560 cm−1 showing the occurrence of
transmission in region III due to surface plasmon excitation at
the opposite interface between regions I and II (a) and cavity
mode at 1/λ = 2530 cm−1 (b). x and y-axes are displayed in
µm and the color scale represents the field intensity normalized
to the incidence field intensity.

mal incidence and at 5 520 and 5 920 cm−1 taking an in-
cidence angle of 2◦ corresponding to the beam divergence
(see insert of Fig. 6). These frequencies are very close to
those experimentally observed for an enhanced transmis-
sion, which gives a first indication on the origin of the
surface plasmon excitation at the air/metal interface as a
mechanism for enhanced transmission. This result is re-
inforced by performing H-field maps at the near-field of
the gratings. The latter, calculated at normal incidence
and for a wavenumber 1/λ = 5 560 cm−1 clearly high-
lights the nature of surface plasmon through the periodic
field-wave localized at the air/metal interface, as shown
in Figure 7a. In contrast, the H-field in region III, which
signs the transmitted intensity, does not exhibit this fea-
ture and γn/n3 �= ±1. This gives a theoretical indication of
transmission enhancement produced by surface plasmon
excitations solely at the interface air/metal. This indica-
tion is confirmed (i) by the experimental observation of
this high transmission and (ii) by the fact that no surface
plasmons can be experimentally excited at the interface
between regions II and III. Indeed, at this interface, the
sample does not contain any metal as the Si/metal inter-
face, taken into account in the calculation, is replaced by
an Si/SiO2 interface, the gratings being produced by coat-
ing certain segments of the upper side of a SiO2 surface, as
explained in Section 3.1. Etching directly a metallic layer
to have a fully metallic grating, identically to the model,
would of course be interesting but is a much more chal-
lenging process which was not accessible to us. However,
it is to note that this disadvantage is also interesting as it
enables to completely uncouple experimentally the effect
of the surface plasmons appearing at one or the other in-
terface of the grating. Finally, it also explains the strong
differences between the experimental and calculated spec-
tra at 1/λ = 1 670, 3 300, 4 990 cm−1 corresponding to the
condition γn/n3 = ±1, i.e. to the Si/metal surface plas-
mons which are calculated but can not be experimentally
observed [28].
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The cavity mode excitations are obtained when the
minima of the denominator modulus in equation (23) is
reached. The estimation, to a first approximation, of the
location of the resonant frequencies of these cavity modes,
was done following the work of Wirgin and Lopez-Rios for
the reflecting gratings [24]. We consider an incidence angle
θ = 0◦ and w 	 λ which implies that:

sn = sinc(k0γnw/2) = sinc(nπΓ )

βn�=0 = i
nλ

d
and βn = β−n.

Under these circumstances, we have

Γ
+∞∑

n=−∞

s2
n

βn
= Γ − 2iΓd

λ

∞∑
n=1

sinc2(nπΓ )
n

� Γ +
2iΓd

λ

(
ln(2πΓ ) − 3

2

)
� Γ + iσ,

where σ is then defined as in equation (25). The latter
expression is inserted into the denominator D of the A0

and B0 terms given in (Eq. (23)). We then looked for
condition satisfying the minima of DD∗ corresponding to
the cavity resonances, as we stand in a region where no
surface plasmon can be excited (λ  d). The minima of
DD∗ is obtained when

coth(k0h) =
(

1 − σσ′

σ + σ′

)
, (26)

where σ′ = ε3σ. When σ and σ′ → 0, i.e. when w 	 λ,
this expression tends to the relation 1/λ = n/2h.

Within this approximation, the first cavity mode is
expected around 1/λ = 2 750 cm−1, which is close to the
mode measured at 2 530 cm−1. Performing the whole cal-
culation enables to find a better agreement with the ex-
periment as the mode is found at 2 450 cm−1, as reported
in Figure 6. H-field maps calculated for this mode, at nor-
mal incidence, confirms the cavity mode excitation as an
amplification of the field within the groove characteris-
tic of this mode is observed. It corresponds to the wave
guide modes first explained by Hessel and Oliner [6] for
deep grooves and proposed by Porto et al. [14] for the
presented type of structures.

5 Summary and conclusions

In this paper, we have presented a theoretical and exper-
imental study of 1D sub-wavelength rectangular metallic
gratings in two cases: reflecting gratings composed of pe-
riodically aligned deep grooves and transmitting gratings
composed of periodically aligned deep slits. In each case,
their far-field properties (reflection and transmission re-
spectively) exhibit specific features associated to the exci-
tation of the EM resonances of these particular systems,
when exposed to P-polarized light. We have given here
a detailed review of the theoretical approach we used,

based of the modal development, which was previously
well described in the literature for S-polarized light and
reflecting gratings only. In parallel to the calculations, we
have fabricated the corresponding samples and measured
their reflection and transmission properties at various in-
cidence angles. In the first case, the reflectivity spectrum
presents minima corresponding to the excitation of the
EM modes which have been identified and characterized.
It was shown that the EM resonances linked to the ex-
citation of surface plasmons at the interface between the
grating and air localizes EM energy at this interface with a
field amplification of one order of magnitude with respect
to the incident field. A second type of EM resonance, due
to a guided-like mode within the cavities was also iden-
tified and tends to localize light in the sub-wavelength
regions of the grooves. Finally, a coupling of both type of
resonance can appear, leading to a higher amplification
of the EM fields. In the case of the transmitting grating,
a highly resonant transmission was measured for specific
frequencies. We attribute this enhanced transmission to
the two different mechanisms also met in the reflecting
gratings, namely the cavity modes and the excitation of
surface plasmons solely at the air/metal interface. The
cavity mode was previously well described theoretically
in references [14,22]. The excitation of surface plasmons
was also discussed but always considering the existence of
surface plasmons on both sides of the grating, that would
couple through the slits. The occurrence of a softening or
a disappearance of the coupling when the dielectric con-
stant between medium I and III become very different was
also briefly mentioned to be possible [14]. We have here
confirmed experimentally the existence of light transmis-
sion through sub-wavelength slits due to cavity modes and
shown that the excitation of surface plasmons solely at one
side of the grating is also sufficient to enable light trans-
mission. Our interpretation [28] is that, due to the propa-
gating nature of the n = 0 mode in the cavities, transmis-
sion through these 1D sub-wavelength slits is possible as
soon as EM fields can be located at the surface or in the
slits, either exciting a cavity mode or a surface plasmon.
This makes these devices interesting for applications as
very deep cavities can be considered, contrary to the 2D
case were the light transmission only occurs by tunneling
of the evanescent waves through the holes [27].

We acknowledge the LETI-PLATO facilities for the SiO2/Si
lithography.

References

1. P. Sheng, R.S. Stepleman, P.N. Sanda, Phys. Rev. B 26,
2907 (1982)

2. F. Toigo, A. Marvin, V. Celli, N.R. Hill, Phys. Rev. B 15,
5618 (1977), and references therein

3. S.L. McCall, P.M. Platzman, P.A. Wolff, Phys. Lett. 77A,
381 (1980)

4. F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev. Lett. 77, 1163
(1996)



154 The European Physical Journal D

5. R.W. Wood, Philos. Mag. 4, 396 (1902); R.W. Wood, Phi-
los. Mag. 23, 310 (1912)

6. A. Hessel, A.A. Oliner, Appl. Opt. 4, 1275 (1965)
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Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Phys. Rev.
Lett. 86, 1114 (2001)
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